N89-16363

Interfacing Ada” and Other Languages

Paul Baffes and Brian West

Intermetrics Inc.

UCT

The Department Of Defence has man-
dated the use of Ada on upcoming projects
involving embedded system software., NASA
has also indicated that Ada has been base-
lined for the Space Station project. Both
of these decisions will require the con-
tractor community to transition from their
current non-Ada programming environments.
Existing software, that is proven and
validated. will most likely continue to be
used during the transition period. During
this period new Ada programs and existing
programs in other languages may need to be
interfaced.

A. myriad of possibilities exits for
the solution of the transition problem.
One set of solutions deals with trans-
lating the source code of the other lan-
guage into Ada source code or the interme-
diate langauge used by the chosen Ada
compiler. Another solution involves a
special interface subroutine that switches
from the Ada run time environment to the
run time environment of the other lan-
guage., The latter solution will be exam-
ined.

The above mentioned non-Ada program-
ming environments consist of many differ-
ent programming languages like FORTRAN,
PASCAL and HAL/S. HWhile each of these
languages is unique, they are all members
of the ALGOL family of programming lan-
guages and share many implementation char-
acteristics. Therefore, an interface sub-
routine can be analyzed for any one of
these language and the results can then be
extended to the remaining languages. HAL/S
was chosen for this examination.

The HAL/S 360 compiler which runs
under the IBM MVS Operating System and the
Ada compiler which runs under the IBM
VM/SL Operating System were selected for
this study. The primary criteria for the
selection of the HAL/S and Ada compilers
was that they were hosted on the same
machine architecture. Both compilers were
developed by Intermetrics.

GENERAL OVERVIEW OF THE PROBLEM

In this section, the general issues
involved in interfacing any two different
high-level languages will be explored.
This explanation will outline the direc-
tion taken by the following sections, &nd
should help in providing an overview of
the intricacies involved in such an inte-
gration.

The Language Environment

Along with any Programming Language
comes a set of assumptions under which
that language is run, This set of assumnr-
tions can be called the environment of
that language, and consists of both algo-
rithms and data structures. While these
may cover a variety of subject matter.
most Algol-like language environments can
be understood through a few basic ideas.

The first of these basic ideas is
known as a run-time stack, In general,
the run-time stack is used to Kkeep track
of local data and register contents across
procedure calls as the program is being
executed. In this way, the integrity of a
procedure can be maintained while contrel
1S passed to a subprocedure, and then
restored when the subprocedure returns,

Another of these basic ideas concerns
the internal representation of data. For
example, one language environment might
use a signed magnitude representation for
integers while another may use twos com-
plement form., Naturally such details are
not an interfacing concern when a calling
procedure and the called subprocedure are
written in the same language, However,
care must be taken to ensure that these
internal representations are 1identical
when two different languages are involved.

A final basic concept involves the
managing of run-time errors, commonly
known as exception handling., Most often, a
language environment will provide a large
collection of procedures called a run-time

® Ada is a Registered Trademark of the U.S. Department of Defence (Ada Joint Px_'ogram Office)

F.3.5.1



library which contains the mechanisms for
dealing with these errors. However, since
two different langquages will use two sepa-
rate run-time libraries, an error occur-—
ring in a subprocedure of one language
would probably not be understood by the
calling procedure of the other language.
This would prevent the calling procedure
from responding to the error in a proper
manner,

The Basic Interface

In light of the previous discussion,
the interface between two distinct lan-
guages becomes a matter of switching envi-
ronments. To accomplish this at run-time,
a special linking subroutine would need to
be invoked from the run-time library of
the calling procedure. This subroutine
would provide the mechanism for saving the
present environment of the calling pro-
cedure and initiating the new environment.
In turn, upon termination of the called
subprocedure, this subroutine would regain
control and reinstate the old environment.

Ada provides an instrument for inter-
facing with other languages called the
PRAGMA INTERFACE directive. The sections
that £follow take 1into consideration the
details necessary for implementing this
mechanism.

COMPARISON OF HAL/S AND ADA ENVIRONMENIS
Parameter Passing

Almost every subroutine makes use of
parameter passing, whether it accepts some
value or values as input, or produces some
output, or both., This process of ex-
changing information between procedures is
part of a language environment and thus
will most likely vary from one language to

another. In regards to the HAL/S and Ada
compilers cited, the discrepancies are
dramatic.

The Procedure Call

In most cases, all parameters are
passed through registers to the called
subroutine. However, when there are not
enough registers for all of the param-
eters, another method is pursued. This
method usually involves placing the param-
eter in temporary storage and passing the
address of this location instead to the
called subprocedure,

Both HAL/S and Ada comply with the
conventions outlined above, However, the
specific registers used by the two lan-
guages to accomplish these standards are
not the same. For example HAL/S and Ada
use a Jdifferent register for addressing
the temporary storage area where the over-
flow parameters are stored. In addition,
Ada may store its parameters in more that
one place, depending on whether or not

and a workspace for

they were dynamically allocated. Any
interfacing subroutine would have to map
one set of register conventions to the
other and also be aware of the different
locations where the overflow parameters
are stored,

The Function Call .

Functions, unlike procedures, return
a value to the calling procedure. This
value is returned via the use of a regis-
ter. As was true with parameter passing,
this register may contain either the ac-
tual value or a reference to the location
where the value is saved. Again, each
language will use different conventions
for returning this value. In fact, the
HAL/S and Ada compilers cited utilize
different registers for this purpose.

Data Representation

A problem related to parameter pas-
sing arises from how each language chooses
to represent its data types. There are a
variety of factors involved in data repre-
sentation including the number of bytes
used, indexing schemes, value restric-
tions, and the algorithm employed for
packing the representations to save space.
Since each language will differ in its
methods of representation, some scheme for
converting data between representations
would have to be implemented before any
interfacing would be possible.

The Run-Time Stack

The objective of the run-time stack
is to keep track of the flow of a program
during its execution; namely, to record
the dynamic nesting of the called proce-
dures. To accomplish this, the run-time
stack contains the information necessary
to describe the state of the program at
any point during its execution. The par-
ticulars of the run-time stack are also
implementation dependent.

The HAL/S Run-Time Stack

HAL/S has a very straightforward
approach to its run~time stack design. Its
run—-time stack is divided into ‘'"stack
frames,” one for each procedure currently
being executed, These stack frames are
further divided into two sections, The
first of these is of a constant size and
contains the following: a register save
area, an area for the current code base,
exception handling,
The second section is of variable size and
is used to store the procedure's local and
temporary variables. The uses of these two
sections are explained below.

When a subprocedure is called., a new
stack frame is created and placed onto the
stack. The contents of all the calling

F.3.5.2



procedure’'s registers are then stored in
the register save area of this new stack
frame, In turn, when the called subproce-
dure returns control to the calling proce-
dure these stored register contents are
replaced into their appropriate registers,
In this way, the calling procedure’'s reg-
ister contents are not violated by the
called subprocedure. The remaining fixed
portion of the stack frame provides the
procedure with run-time control informa-
tion, This information includes: the
location of the first executable instruc-
tion for the current procedure, a tempo-
rary workspace, and a link to the error
hibrary.

The second section of the run-time
stack is left for the local and temporary
variables of the subprocedure being exe-
cuted, The size of this section varies
from procedure to procedure depending on
each procedure’'s number of local and tem-—
porary variables, The size of each proce-
dure stack frame, however, is determined
at compile time. So while stack frame
sizes may vary from procedure to proce-

dure, each procedure's particular stack
frame size is fixed at execution time.
The Real Time Executive

Real time executives are used to
synchronize and allow communication be-
tween two independently executing pro-

grams. Any program which depends upon
some real world event will depend upon a
real time executive for proper execution.
The 1internal mechanisms which implement
real time executives are nontrivial and
vary widely among the languages that pro-
vide real time features. Although HAL/S
and Ada both have a powerful set of real
time executive tools, these tools are
unalike and they require different ap-
proachs by the applications programmer for
solving real time problems. Because their
sets of real time executives are not the
same, the HAL/S and Ada language environ-
ments will incorporate different implemen-
tation schemes. To interface these two
sets of real time executives would pose an
extremely involved challenge.

The Run-Time Library

Every language has a set of primitive
utilities which it uses repetitively. This
set of wutilities is commonly called the
run—time library. The run-time library is
automatically 1linked with the program's
object module before execution, As a re-
sult, every procedure or subprocedure of
the program can employ any routine pro-
vided by the run-time library.

Of course, each language will have a
unique run-—-time library. One of the more
significant problems arising from this
concerns error handling, When an error
occurs during the execution of a program,
the problem is most often managed by a
routine in the run-time library. If this

were to happen in a called subprocedure of
a different language, there would be no
guarantee that the process used to handle
the error would be understood by the cal-
ling procedure. This problem is important
because some errors may require termina-
tion of the program, Thus, if the called
subprocedure were to force termination
before returning control, the calling pro-
cedure would not be able to exit 1n a
graceful manner. This could result 1in a
loss of pertinent information., Addition-
ally, similar errors may be handled with
different levels of severity by different
language environments. In particular, what
may cause a HAL/S program to terminate may
only raise an exception in an Ada program.
This presents a formidable problem for the
interfacing subroutine,

SUMMARY
Overview of an Interface Subroutine

The interface subroutine would oper-
ate in a straightforward manner. The rou-
tine would first locad the passed parame-
ters 1into the registers. A parameter
would be passed either by its actual value
or by a pointer, a machine address. Veri-
fying that the parameters were passed 1in
the correct format would be the resporn-
sibility of the Ada applications program-
mer,

The next step in the interface sub-
routine would be to initialize a new HAL/S
stack frame and branch to the entry point
of the HAL/S executable code, During exe-
cution, calls to the HAL/S run-time li-
brary may be made. To guarantee proper
execution., the Ada applications programmer
would have to include all needed HAL/S
run-time library routines in the 1load
module, Upon finishing the normal execu-
tion of the HAL/S code, a branch would be
made back to the 1linking subroutine and
the old stack frame would be popped off
the stack.

Finally, the interface subroutine
would remove the passed parameters from
the registers. Before assigning these
values to their appropriate memory loca-
tions, constraint checking should be per-
formed. Any constraint violation should
raise an exception and the corresponding
exception handier should be invoked at
that time,

Restrictions on the Interface

Restrictions, unfortunately., would
have to be placed on the called HAL/S
procedure. The interface subroutine would
resolve as many of the differences between
the two run time environments as possible.
Those differences which could not be re-
solved would result in restrictions on the
interface.

One restriction would involve the way

F.3.5.3



errors are handled. Run-time errors 1in
the HAL/S executable code will not raise
exceptions when they occur, Some of these
exceptions could be raised by the inter-
face subroutine when constraint checking
is done. Other run-time errors 1in the
HAL/S code would go unnoticed and the
subsequent execution would be indeter-
minant., Note that the called HAL/S proce-
dure would have to have an appropriate ON
ERROR IGNORE statement or else the HAL/S
ccde couid make an unsupported operating
system call.

Another restriction concerns the vi-
sibility of variables. At the point of the
HAL/S procedure call in the Ada program,
scme of the declared variables may have
visibility. While an Ada procedure called
from the same point would be able to ac-
cess these visible variables, the HAL/S
procedure could not. Succintly, the only
way the Ada program and the HAL/S proce-
dure could communicate would be via the
passed parameters. :

Yet another restriction would be that
the HAL/S procedure could not invoke real
time executives, Rdditional restrictions
may be to limit the use of Ada real time
executives and to circumscribe the use of
1/0 in the HAL/S procedure. The above two
proposed limitations need further investi-
gation.

CONCLUSION

Interfacing two separately developed
compilers is a complex task. The complex-
1ty arises because very few design stand-
ards exist for compiler development. This,
coupled with the many complicated design
decisions inherent in compiler construc-
tion, virtually guarantees noncompatibil-
ity. The interface subroutine which would
link the two different run time environ-
ments would resolve as many of the dis-
similarities as possible, The differences
that could not be resolved would be re-
sponsible for the restrictions placed on
the interface. Albeit restrictions would
exist, the resulting interface may be well
worthwhile,

L HY

Aho, Alfred V. and Ullman, Jeffrey D.,
Princjiples of Compiler Design.

Reading: Addison—-Nesley Publishing
Company. 1977.

Booch, Grady. Software Engineering with
Ada. Menlo Park: The Benjamin/Cummings
Publishing Co., Inc.., 1983,

Ryer, Michael J. Programming in HAL/S.
Cambridge: Intermetrics Inc., 1980.

Computer Program Development Specification
for the Ada Integerated Environment.

IR-MA-300, Cambridge: Intermetraics
Inc., 1984,

HAL/S-360 Compiler System Specification,
IR-60-07. Cambridge: Intermetrics
Inc., 1981.

F.3.5.4



